1,235 research outputs found

    CHAMP observation of intense kilometer-scale field-aligned currents, evidence for an ionospheric AlfvĂŠn resonator

    No full text
    International audienceBursts of very intense kilometer-scale field-aligned currents (KSFACs) are observed quite frequently by the CHAMP satellite when passing through the auroral region. In extreme cases estimated current densities exceed 3 mA/m². Typical scale sizes of these KSFACs are 1 km. The low-Earth, polar orbiting satellite CHAMP allows one to assess KSFACs down to scales of a couple of 100 m based on its high-precision magnetic field vector data sampled at 50 Hz. Using data from 5 years (2001?2005) details of these currents can be investigated. In our statistical study we find that most of the KSFAC bursts and the strongest events are encountered in the cusp/cleft region. Significantly fewer events are found on the nightside. The affected region is typically 15°?20° wide in latitude. There seems to be some dependence of the current intensity on the level of magnetic activity, Kp. On the other hand, no dependence has been found on sunspot number, the solar flux level, F10.7 or the solar zenith angle. The latitude, at which KSFAC bursts are encountered, expands equatorward with increasing Kp. This trend follows well the auroral oval expansion during enhanced magnetic activity. These KSFACs are generally accompanying large-scale FAC sheets, and they are predominantly associated with Region 1 currents. We propose an explanation of the KSFACs in terms of AlfvÊn waves trapped in a ionospheric resonator, which is initiated when the convection electric field or current strength surpasses a critical value. Many properties of such a resonator are in agreement with our KSFAC results

    Dynamical mean-field theory of indirect magnetic exchange

    Full text link
    To analyze the physical properties arising from indirect magnetic exchange between several magnetic adatoms and between complex magnetic nanostructures on metallic surfaces, the real-space extension of dynamical mean-field theory (R-DMFT) appears attractive as it can be applied to systems of almost arbitrary geometry and complexity. While R-DMFT describes the Kondo effect of a single adatom exactly, indirect magnetic (RKKY) exchange is taken into account on an approximate level only. Here, we consider a simplified model system consisting of two magnetic Hubbard sites ("adatoms") hybridizing with a non-interacting tight-binding chain ("substrate surface"). This two-impurity Anderson model incorporates the competition between the Kondo effect and indirect exchange but is amenable to an exact numerical solution via the density-matrix renormalization group (DMRG). The particle-hole symmetric model at half-filling and zero temperature is used to benchmark R-DMFT results for the magnetic coupling between the two adatoms and for the magnetic properties induced in the substrate. In particular, the dependence of the local adatom and the nonlocal adatom-adatom static susceptibilities as well as the magnetic response of the substrate on the distance between the adatoms and on the strength of their coupling with the substrate is studied. We find both, excellent agreement with the DMRG data even on subtle details of the competition between RKKY exchange and the Kondo effect but also complete failure of the R-DMFT, depending on the parameter regime considered. R-DMFT calculations are performed using the Lanczos method as impurity solver. With the real-space extension of the two-site DMFT, we also benchmark a simplified R-DMFT variant.Comment: 14 pages, 8 figure

    Measuring Luttinger Liquid Correlations from Charge Fluctuations in a Nanoscale Structure

    Full text link
    We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side-coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.Comment: REVTeX, 4 pages, 1 figure included. Final version, two references adde

    Ingestion of Diet Soda Before a Glucose Load Augments Glucagon-Like Peptide-1 Secretion

    Get PDF
    OBJECTIVE — The goal of this study was to determine the effect of artificial sweeteners on glucose, insulin, and glucagon-like peptide (GLP)-1 in humans. RESEARCH DESIGN AND METHODS — For this study, 22 healthy volunteers (mean age 18.5 � 4.2 years) underwent two 75-g oral glucose tolerance tests with frequent measurements of glucose, insulin, and GLP-1 for 180 min. Subjects drank 240 ml of diet soda or carbonated water, in randomized order, 10 min prior to the glucose load. RESULTS — Glucose excursions were similar after ingestion of carbonated water and diet soda. Serum insulin levels tended to be higher after diet soda, without statistical significance. GLP-1 peak and area under the curve (AUC) were significantly higher with diet soda (AUC 24.0 � 15.2 pmol/l per 180 min) versus carbonated water (AUC 16.2 � 9.0 pmol/l per 180 min; P � 0.003). CONCLUSIONS — Artificial sweeteners synergize with glucose to enhance GLP-1 release in humans. This increase in GLP-1 secretion may be mediated via stimulation of sweet-taste receptors on L-cells by artificial sweetener. Consumption of sodas containing artificial sweeteners is common practice in both children and adults. It is generally assumed that glucose metabolism is not altered because these sodas contain no or extremely few calories from carbohydrate. However, recent data obtained from animal studies demonstrate that artificial sweeteners play an active metabolic role within the gastrointestinal tract. Sweet-taste receptors, including the T1R family and �-gustducin, respond not only to caloric sugars such as sucrose but also to artificial sweeteners, including sucralose (Splenda) and acesulfame-K (1,2). In both humans and animals, these receptors have been shown to be present in glucagon-like peptide (GLP)-1–secreting L-cells of the gut mucosa as well as in lingual taste buds (3–5) and serve as critical mediators of GLP-1 secretion (5). In Diabetes Care 32:2184–2186, 2009 this study, we examined the effect of artificial sweeteners in a commercially available soft drink on glucose, insulin, and GLP-1 in humans

    Image Co-localization by Mimicking a Good Detector's Confidence Score Distribution

    Full text link
    Given a set of images containing objects from the same category, the task of image co-localization is to identify and localize each instance. This paper shows that this problem can be solved by a simple but intriguing idea, that is, a common object detector can be learnt by making its detection confidence scores distributed like those of a strongly supervised detector. More specifically, we observe that given a set of object proposals extracted from an image that contains the object of interest, an accurate strongly supervised object detector should give high scores to only a small minority of proposals, and low scores to most of them. Thus, we devise an entropy-based objective function to enforce the above property when learning the common object detector. Once the detector is learnt, we resort to a segmentation approach to refine the localization. We show that despite its simplicity, our approach outperforms state-of-the-art methods.Comment: Accepted to Proc. European Conf. Computer Vision 201

    Field-aligned current associated with low-latitude plasma blobs as observed by the CHAMP satellite

    Get PDF
    Here we give two examples of low-latitude plasma blobs accompanied by linearly polarized perpendicular magnetic deflections which imply that associated field-aligned currents (FACs) have a 2-D sheet structure located at the blob walls. The estimated FAC density is of the order of 0.1 μA/m<sup>2</sup>. The direction of magnetic deflections points westward of the magnetic meridian and there is a linear correlation between perpendicular and parallel variations. All these properties are similar to those of equatorial plasma bubbles (EPBs). According to CHAMP observations from August 2000 to July 2004, blobs show except for these two good examples no clear signatures of 2-D FAC sheets at the walls. Generally, perpendicular magnetic deflections inside blobs are weaker than inside EPBs on average. Our results are consistent with existing theories: if a blob exists, (1) a significant part of EPB FAC will be closed through it, exhibiting similar perpendicular magnetic deflection inside EPBs and blobs, (2) the FAC closure through blobs leads to smaller perpendicular magnetic deflection at its poleward/downward side, and (3) superposition of different FAC elements might result in a complex magnetic signature around blobs
    • …
    corecore